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Abstract

In this paper we compare small deformations in an infinite linear elastic body due

to the presence of point loads within the classical, local formulation to the correspond-

ing deformations in the peridynamic, non-local formulation. Due to the linearity of

the problem the response to a point load can then be used to obtain the response to

general loading functions by superposition. Using Laplace and Fourier transforms

we first derive an integral representation for the 3D peridynamic solution with the

help of Green’s functions. Dynamic and static examples in 1D and 3D using this

theoretical result illustrate interesting differences between the local and non-local

formulation. Explicit analytical solutions are obtained where possible. Numerical

methods are used when needed and also for verification.

1 Introduction

The prediction of the spontaneous nucleation of cracks as well as the subsequent propaga-
tion in load-carrying structures such as the wing of an airplane presents a long-standing
problem in continuum mechanics of solids. In a complex loading situation such as a bird
strike multiple interacting cracks can be present at the same time. The generally curvi-
linear path along which a crack propagates in a three dimensional structure is not known
a priori and must be determined as part of the solution. In addition the crack path also
depends on the material. Recently anisotropic composite materials (such as CFRP) are
replacing more traditional isotropic materials (such as aluminum) in part because of their
higher specific strength, promising significant weight savings. For a given loading the crack
path in a composite structure depends on the details of the underlying microstructure.
The level of fidelity of simulations using traditional FE codes in predicting inelastic mate-
rial behavior has lagged behind their capabilities in elastic stress analysis. This difficulty
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arises in part because the mathematical framework on which these methods are based as-
sumes that the body remains continuous as it deforms. Hence, these methods break down
at a crack tip and special techniques must be used which typically require the path of the
crack to be known in advance, amongst other difficulties.
As an attempt at improving this situation, a theory of continuum mechanics known as
peridynamics has been recently proposed by Silling [36]. Silling realized that the afore-
mentioned limitations cannot be removed by further attempts to retrofit the traditional
FE methods. The objective of peridynamics is to reformulate the basic mathematical de-
scription in such a way that the same equations hold both at a crack tip as well as in the
far field. In this approach internal forces are expressed through pairwise interactions, so-
called bonds, between pairs of material points. The finite interaction distance introduces
non-locality. The complete constitutive model, including damage, is determined at the
bond level. Cracks grow when and where it is energetically favorable for them to do so.
Non-local theories in continuum mechanics have been known since the 1970s from arti-
cles by Kröner [23], Eringen [17, 18], Edelen [19], Kunin [24], Rogula [33] and co-authors.
These theories aim to describe certain effects which are not captured accurately in the
corresponding local formulation, e.g. the physically unreasonable infinite stresses found
at a crack tip in local linear elasticity. More recently, non-local approaches have been
discussed e.g. in [5, 6, 8, 31, 32, 36, 43, 44, 11, 26]. Among these approaches peri-
dynamics falls into the category of strongly non-local methods. Recent theoretical de-
velopments in peridynamics can be found in [15, 47, 10, 40, 25, 39, 45, 16, 46]. In
[1, 3, 7, 9, 12, 20, 21, 49, 30, 27, 29, 34, 37, 38, 48] simulations based primarily on an
numerical implementation of peridynamics called EMU [35] cover a wide range of very in-
teresting problems involving the spontaneous initiation of discontinuities followed by their
unguided propagation.
However, the study of strictly elastic problems and their relationship to the classical local
formulation has been somewhat neglected. This neglect stems from the following. Local
elasticity is well understood and yields satisfactory results for a large class of important
problems typically involving the determination of the stress and strain fields. While it
is possible to solve the same set of elastic problems using the non-local peridynamic for-
mulation, the computational costs would be considerably higher. However, the fidelity of
the classical approach in determining the initiation and propagation of cracks is clearly
lagging behind its ability to determine elastic stress and strain fields. Peridynamics has
been developed in an effort to close this gap in predicting inelastic deformations.
However, in order to increase the fidelity in predicting inelastic material behavior a full
understanding of the elastic case is essential which is the focus of this paper.

The paper is organized as follows. In section 2 previous research using Green’s func-
tions for elastic problems in 1D is summarized and in section 3 this approach is extended
to the 3D case. This section also contains a careful comparison between local and non-local
elasticity, including a previously unpublished formulation for the 3D FE discretization of
the peridynamic equation of motion. Examples are given in section 4. Section 5 concludes
and discusses open questions.
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2 Local and non-local elastic deformations in 1D

The equation of motion at time t for the material point x in an infinite, homogeneous body
in one spatial dimension is

ρ ü(x, t) = L[u(x, t)] + b(x, t) (1)

where the linear operator L acting on the displacement field u(x, t) captures internal forces
while b(x, t) captures external forces. ρ is the density.1

In local elasticity the internal forces are represented by the differential operator

LL[u(x, t)] = E
∂2u(x, t)

∂2x
(2)

with Young’s modulus E. This is the well-known wave equation. On the other hand, the
non-local peridynamic formulation for an infinite linear micro-elastic material leads to the
integral operator

NLL[u(x, t)] =

∫ +∞

−∞
c(x′ − x)[ u(x′, t) − u(x, t) ]dx′ (3)

with the so-called micromodulus function c(ξ) = c(−ξ).
The associated energy balance is obtained by multiplying the equation of motion (1) by
the velocity and subsequent integration over the body2:

Ėtot(t) = P (t) (4)

P (t) =

∫ +∞

−∞
b(x, t)u̇(x, t)dx

Etot(t) = Ekin(t) + Eel(t)

Ekin(t) =

∫ +∞

−∞

ρ

2
(u̇(x, t))2 dx

LEel(t) =

∫ +∞

−∞

1

2

(

∂u(x, t)

∂x

)2

dx

NLEel(t) =

∫ +∞

−∞

∫ +∞

−∞

c(x′ − x)

4
(u(x′, t) − u(x, t))2dx′dx

1Equation (1) has the same form for both local and non-local formulation. However, the operator L is
different and so is the solution. This will be indicated by the superscripts L(·), NL(·) in the following.

2This can be verified by taking the time derivative inside the integral and substituting the corresponding
equation of motion.
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Given the initial data u0(x) = u(x, t = 0), v0(x) = u̇(x, t = 0) it has been shown in [46]
that the solution of (1) has the following integral representation

u(x, t) =

∫ +∞

−∞
u0(x− x̂)ġ(x̂, t)dx̂+

∫ +∞

−∞
v0(x− x̂)g(x̂, t)dx̂ (5)

+

∫ t

0

∫ +∞

−∞

b(x− x̂, t− t̂)

ρ
g(x̂, t̂)dx̂dt̂ where

g(x, t) = F−1
1D{

sin(ω(k)t)

ω(k)
} ≡ 1

2π

∫ +∞

−∞
eikx

sin((ω(k)t)

ω(k)
dk and

Lω(k) = c0 kwith the speed of sound, c0 =
√

E/ρ

NLω(k) =

(
∫ +∞

−∞
(1 − cos(kξ))c(ξ)dξ/ρ

)1/2

3 Local and non-local elastic deformations in 3D

3.1 Kinematics

The material particles X are addressed by their position in the reference configuration at
say t = 0, represented by their position vectors x ∈ R

3. At time t the particle X has moved
to its current position y(x, t) = x+u(x, t) where u is the displacement field. The velocity
of particle X is defined as v(x, t) = ẏ(x, t) = u̇(x, t). The relative position of two particles
X andX ′ in the reference configuration is denoted by ξ = x′−x and is called a peridynamic
bond. The corresponding relative position in the current configuration is given by y(x′, t)−
y(x, t) = ξ+η = (ξ+η)nξ+η with the relative displacement η = u(x′, t)−u(x, t) and the
unit vector pointing from particle X towards particle X ′, nξ+η. For smooth deformation

fields we can introduce the deformation gradient F (x, t) = (∇y(x, t))T : ξ + η = F · ξ +
O(ξ2) or dy(x, t)|t = F (x, t) · dx. Due to the balance of linear and angular momentum
the non-local force that particle X ′ exerts on X must be a central force, f(x,x′, t) =
f(x,x′, t)nξ+η. These quantities are illustrated in the following graphic.
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Fig. 1: Kinematics

3.2 Comparison of local and non-local elasticity

3.2.1 Equation of motion

The equation of motion at time t ∈ T = (0, T ) for the material point x ∈ B in an infinite,
linear elastic, isotropic, homogeneous body B = R

3 as formulated within the framework of
local continuum mechanics is given by the the Navier equations, see e.g. [14]:

ρ ü(x, t) = ∇ · S(x, t) + b(x, t) (6)

S(x, t) = 2µ ε(x, t) + λTr(ε(x, t))I

ε(x, t) =
1

2

(

∇u(x, t) + (∇u(x, t))T
)

with the reference density ρ, the 2nd Piola-Kirchhoff stress tensor S, Cauchy’s in-
finitesimal strain tensor ε and the external force field b. λ and µ are the Lamé constants
which can alternatively be expressed in terms of the Young’s modulus E = µ3λ+2µ

λ+µ
and

the Poisson ratio ν = λ
2(λ+µ)

. At time t = 0 we have the initial conditions

u0(x) = u(x, 0) (7)

v0(x) = u̇(x, 0)

In the strongly non-local peridynamic formulation of continuum mechanics, see [36],
the equation of motion for an infinite, isotropic, homogeneous, linear microelastic, pairwise
equilibrated material takes the form

ρ ü(x, t) =

∫

H(x,δ)

C(ξ) · [u(x + ξ, t) − u(x, t)] dVξ + b(x, t) (8)

C(ξ) = Λ(ξ)ξξ (9)
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where the interaction "horizon" H(x, δ) is taken to be the sphere with center x and radius
δ ∈ (0,∞]. The symmetric micromodulus tensor C(ξ) = C(−ξ) = CT (ξ), more precisely,
the micromodulus function Λ(ξ), contains all constitutive information.
Formally, the differential operator of local elasticity has been replaced by the non-local
peridynamic integral operator:

ρ ü(x, t) = L[u(x, t)] + b(x, t) (10)
LL[u(x, t)] = (λ+ µ) ∇∇ · u(x, t) + µ∇ · ∇u(x, t) (11)

NLL[u(x, t)] =

∫

H(x,δ)

C(ξ) · [u(x + ξ, t) − u(x, t)] dVξ (12)

3.2.2 Jump conditions

One first important difference between the local and non-local formulation is the jump
condition for linear momentum formulated across a moving discontinuity surface A(t).
The spatial (immaterial) point yA(t) ∈ A(t) momentarily occupies the material point
xA(t), so yA(t) = y(xA(t), t). At yA, A(t) has the surface normal nA(t) and velocity3

vA(t) = F + · ẋA + v+ = F− · ẋA + v−. At the fixed time t the linear momentum jump
condition reads as4

nA · [[(v − vA) ρ̃v]] =

{

nA · [[S]] Local

0 Non-local
(13)

where ρ̃ is the mass per unit volume in the actual configuration which is related to the
reference density by ρ = det(F ) ρ̃. The jump conditions for mass and continuity of dis-
placement are identical in both formulations:

nA · [[(v − vA) ρ̃]] = 0 Balance of mass (14)

[[F ]] · ẋA + [[v]] = 0 Continuity (15)

Substituting equation (14) into the non-local equation (13) and assuming that the defor-
mation is such that the density always remains positive (det(F ) > 0) it follows that

nA ·
(

v+ − vA
)

[[v]] = 0 (16)

If we choose an arbitrary, immaterial discontinuity surface with nA · v+ 6= nA · vA, it
follows from equation (16) that we cannot have a jump in the velocity field. In a continuous
deformation equation (15) then implies that the deformation gradient tensor, and therefore
the strain tensor, must be continuous as well. This is the trivial case where all the fields
are smooth.
On the other hand, if we assume an (initial) velocity field with a jump discontinuity as in the

3Here φ+ and φ− are the values of φ from positive and negative sides of nA of A and [[φ]] := φ+−φ−.
4See e.g. [42] for a derivation.
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case of the well-known Riemann problem, eqs (16, 14) imply nA ·v+ = nA ·v− = nA ·vA or
vA = v+ ·nA nA +v⊥

A with v⊥
A ·nA = 0. This means that in a non-local deformation which

respects both balance of mass and linear momentum the normal component of the velocity
field is always continuous and any discontinuity surface moves like a material interface in
the normal direction. The only possible velocity jumps lie in the tangent plane that locally
coincides with the generally curved discontinuity surface: [[v ·P nA

]] 6= 0 with the projector
P nA

= I − nAnA. Since vA(t) = F + · ẋA + v+ it follows that nA · F + · ẋA = 0. For
arbitrary nA and det(F +) > 0 this implies ẋA = 0. However, according to equation (15)
this is no longer compatible with a discontinuous velocity field.
In summary, a jump in the velocity field can only occur in the components that lie in
the plane tangent to the discontinuity surface A. It is always accompanied by a jump in
displacement field, the location of which is fixed at the Lagrangian point xA

5. This is an
important difference between the non-local and local formulation, the latter allowing for
shock-waves in which both velocity and strain field can simultaneously be discontinuous.

3.2.3 Energy balance

The energy balance associated with the equation of motion (10) is obtained by multiplica-
tion with the velocity field v(x, t) and integration over the domain B:

Ėtot(t) = P (t) (17)

P (t) =

∫

B
b(x, t) · v(x, t)dVx

Etot = Ekin(t) + Eel(t)

Ekin, el(t) =

∫

B
ekin, el(x, t)dVx

ekin(x, t) =
ρ

2
v(x, t)2

Leel(x, t) =
1

2
S(x, t) ·· ε(x, t)

NLeel(x, t) =
1

2

∫

H(x,δ)

w(ξ,u(x + ξ, t) − u(x, t))dVξ

w(ξ,η) =
1

2
η · C(ξ) · η

The definition of the kinetic energy and the power of the external forces is the same in
both local and non-local elasticity while the elastic energy differs: the non-local elastic
energy density is given by the integration of the pairwise potential w(ξ,η) : ∂ηw(ξ,η) =
C(ξ) · η = f(x,x′, t) over the horizon. For example, in a homogeneous deformation
characterized by a constant deformation gradient F 0 we have Leel = λ+2µ

2
I2
1 − 2µ I2 and

NLeel = π
15

∫ δ

0
ξ6Λ(ξ)dξ [ 3I2

1 − 4I2 ] with the first and second invariants of the strain tensor

ε0 = 1
2
(F T

0 ·F 0 − I): I1 = Tr(ε) = εI + εII + εIII and I2 = εIεII + εIIεIII + εIIIεI , see [2].

5In [46] analogous results were obtained for the 1D case.
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Requiring that the elastic energy density for any homogeneous deformation is identical in
both local and non-local elasticity leads to the restriction6

λ = µ or ν =
1

4
(18)

It further relates the micromodulus function Λ to the Lamé constant λ
∫ δ

0

Λ(r)r6dr =
15λ

2π
(19)

3.2.4 Equation of motion in Fourier space

Applying the Fourier-transform with respect to the spatial coordinate x we can equiva-
lently characterize the equation of motion (10) by the acoustic tensor M(k) as follows7

ρ ¨̄u(k, t) + M(k) · ū(k, t) = b̄(k, t) (20)

M(k) = M‖(k)nknk +M⊥(k)P nk
(21)

LM‖(k) = (λ+ 2µ) k2 (22)
LM⊥(k) = µ k2 (23)

NLM‖(k) = 4π

∫ δ

0

Λ(r)r4A1(kr)dr (24)

NLM⊥(k) = 4π

∫ δ

0

Λ(r)r4A2(kr)dr (25)

A1(x) =
1

3
− sin(x)

x
− 2 cos(x)

x2
+

2 sin(x)

x3
(26)

=
∞

∑

k=0

(−1)kx2k+2

(2k + 2)!(2k + 5)
=
x2

10
+O(x4)

A2(x) =
1

3
+

cos(x)

x2
− sin(x)

x3
(27)

=

∞
∑

k=0

(−1)kx2k+2

(2k + 3)!(2k + 5)
=
x2

30
+O(x4)

The transformed initial conditions are

ū0(k) = F{u0(x)} (28)

v̄0(k) = F{v0(x)}
6This restriction is only present in the bond-based formulation and no longer present in the so-called

state-based peridynamic formulation, see [39].
7The local case can be obtained by using the formula for the Fourier-transforms of derivatives given

in section 7.2.2. In the non-local case one first uses the convolution theorem given in section 7.2.3 to
obtain the acoustic tensor NLM(k) = C̄(0) − C̄(k). Carrying out the required integration for the
inverse Fourier-transform in spherical coordinates and using the result that

∫

S
e−ik·ξnξnξdAξ/4π =

sin(kx)−kx cos(kx)
(kx)3 nknk + ((kx)2−2) sin(kx)+2kx cos(kx)

(xk)3 P nk
where S is the unit sphere we obtain (20).
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Using equation (19) together with eqs (26, 27) we see that the first non-zero term in the
Taylor expansion of the the non-local acoustic tensor NLM(k) in the large wavelength
limit k → 0 coincides with the local acoustic tensor LM(k) for materials with λ = µ.
Alternatively, the convergence of the non-local peridynamic equation (8) towards the local
Navier equations (6) can be shown directly in (x, t)-space, see [16] (linear bond-based
formulation) and [40] (non-linear state-based formulation).

3.2.5 Wave propagation

A physical interpretation of the acoustic tensor can be obtained by studying the propaga-
tion of plane waves u(x, t) = û eı (k·x±ω(k) t) where ω(k) is the dispersion relation relating
the angular frequency ω to the wave number k = ||k||. Substituting the wave ansatz into
the equation of motion (10) leads to the eigenvalue problem M(k) · û = ρ ω(k)2û. From
this we can identify pressure and shear waves where û = û‖ nk and û = û⊥ tk, tk · nk = 0
traveling with the phase velocities

vp‖(k) =
ω‖(k)

k
=

√

M‖(k)/ρk2 (29)

vp⊥(k) =
ω⊥(k)

k
=

√

M⊥(k)/ρk2 (30)

In local elasticity the phase velocity does not depend on the wavelength for either pressure
or shear waves: Lvp‖ =

√

λ+ 2µ/ρ, Lvp⊥ =
√

µ/ρ, see eqs (22, 23). In contrast, peridynamics
always leads to wave dispersion. Note that wave dispersion is present in most augmented
models of continuum mechanics such as the weakly non-local higher order gradient the-
ories, see e.g. [28] or the strongly non-local Eringen-type models, see e.g. [17]. These
models aim to describe certain effects which are not captured accurately in local linear
elasticity. One such example is the non-linearity found in experimentally measured disper-
sion relations, reflecting the inability of real materials to sustain waves of arbitrarily small
wavelength as described in [22]. In this context it remains an important open question
whether it is possible to determine the micromodulus function Λ(ξ) from experimentally
obtained dispersion data.
As an example, consider the case where all points interact: H(x, δ) = R

3. The micromod-

ulus function is assumed to be either exponential Λe(ξ) = λ
δ̃7

8
π3/2

e−( ξ

δ̃
)2 or trigonometric

Λt(ξ) = λ
δ̃7

15
π2

sin(x
δ̃
)−x

δ̃
cos(x

δ̃
)

(x
δ̃
)7

where the length-scale δ̃ determines the degree of non-locality.

As shown below, the exponential form of the micromodulus function leads to wave dis-
persion for any finite wavelength χ = 2π

k
while the trigonometric micromodulus function

behaves like a low-pass filter: waves with a wavelength larger than χc = 2πδ travel with
the same phase velocity as in the local formulation, waves smaller than the cut-off wave-
length χc are dispersed. The exponential form of the micromodulus function results in the

9



following phase velocities as a function of the normalized wave number κ = k δ̃

NLvp‖(κ)
√

λ/ρ
=

√

4 + 2e−
κ2

4 (κ2 − 2)

κ2
=

√
3 − 5

16
√

3
κ2 +O(κ4) (31)

NLvp⊥(κ)
√

λ/ρ
=

√

4 − 4e−
κ2

4

κ2
= 1 − 1

16
κ2 +O(κ4) (32)

while the trigonometric micromodulus leads to

NLvp‖(κ)
√

λ/ρ
=

{√
3 κ ≤ 1

√

5κ3−2
κ5 κ > 1

(33)

NLvp⊥(κ)
√

λ/ρ
=

{

1 κ ≤ 1
√

5κ3−5κ2+1
κ5 κ > 1

(34)

The large wavelengths expansion confirms the convergence towards local elasticity for ma-
terials with λ = µ as illustrated in the following graphic (left: exponential micromodulus,
right: trigonometric micromodulus):

0 1 2 3 4 5

0.5
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2.0

kδ̃

vp√
λ/ρ

Local pressure wave

Non-local pressure wave

Local shear wave

Non-local shear wave

Non-local small wavelength wave
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1.0
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kδ̃

vp√
λ/ρ

Local pressure wave

Non-local pressure wave

Local shear wave

Non-local shear wave

Non-local small wavelength wave

Fig. 2: Phase velocities in local and non-local elasticity

Furthermore, one can see that the components of the acoustic tensor become indepen-
dent of the wave number in the small wavelength limit

NLM∞ = NLM∞
‖ = NLM∞

⊥ =
4π

3

∫ δ

0

Λ(r)r4dr (35)

so the phase velocity goes to zero as NLvp(k) ∼
√

NLM∞/ρ

k
. In the example above NLM∞

e =

4λ/δ̃2 and NLM∞
t = 5λ/δ̃2.
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3.2.6 Weak formulation

Another way to characterize the motion u is given by the variational problem

u = argmin J [u(x, t)], J [u(x, t)] =

∫

T

∫

B
L(x, t)dVxdt (36)

where the Lagrangian density is given by L(x, t) = ekin(x, t) − eel(x, t) − eb(x, t) and the
potential of the external force field is defined as eb(x, t) = −b(x, t) · u(x, t). The Euler-
Lagrange-equation associated with the variational problem (36) is the equation of motion
(10), see [47]. The only difference between the local and the non-local formulation is again
the elastic energy density.

3.2.7 Finite Element discretization

Finally one can also characterize the local and non-local formulations by their correspond-
ing stiffness matrices. Introducing the Ritz-ansatz

uN(x, t) =
N

∑

α=1

uα(t)gα(x) (37)

into the variational problem (36) leads to the discretized equation of motion for the 3N
unknown displacements uαi (t) = ei · uα(t)

M
f

ü
f

(t) + K
f

u
f

(t) = b
f

(t)

m (38)
3

∑

j=1

N
∑

β=1

M i, j
α, βü

β
j (t) +

3
∑

j=1

N
∑

β=1

Ki, j
α, βu

β
j (t) = biα(t)

The mass matrix and the inhomogeneity are identical in local and non-local elasticity

M i, j
α, β = ρ δij

∫

B
gα(x)gβ(x)dVx (39)

biα(t) =

∫

B
gα(x)bi(x, t)dVx with bi(x, t) = bi(x, t) = ei · b(x, t) (40)

while the local and non-local stiffness matrices differ

LKi j
α, β =

∫

B
[ (λ+ µ)

∂gα(x)

∂xi

∂gβ(x)

∂xj
+ µ δij

3
∑

k=1

∂gα(x)

∂xk

∂gβ(x)

∂xk
]dVx (41)

NLKi j
α, β =

∫

B

∫

B
[gα(x

′) − gα(x)]
Cij(x′ − x)

2
[gβ(x

′) − gβ(x)] dVx′dVx with (42)

Cij(ξ) = Cij(ξ) = ei · C(ξ) · ej = Λ(ξ)ξiξj
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where the limits of integration in the inner integral have been formally extended from
H to the whole domain B since by definition C(ξ) = 0∀ξ ≥ δ. The bandwidth of the
stiffness matrix of local elasticity depends on the support of the basis function gα(x). For
computational efficiency one typically introduces a numerical length-scale δn such that
gα(x) = 0 ∀x ≥ δn, ∀α. Within the local formulation this leads to a sparse stiffness ma-
trix with band structure. Within the non-local formulation the situation is more complex
as there are two length-scales present, the numerical length-scale δn and the peridynamic
horizon δ. To simplify the discussion we assume that δ = ∞. Then the resulting non-
local stiffness matrix will be dense, representing the physical interaction between any two
particles in the body. Returning to the general case δ < ∞ the non-local stiffness matrix
will generally have a larger band-width than the local stiffness matrix. The higher com-
putational costs are justified e.g. in the presence of propagating cracks (corresponding to
discontinuous displacements) since this class of solutions are not contained in the Sobolev

space associated with the weak formulation of the Navier equations.
Using the concept of Dirac distributions ∆(x)

∫

I
δ(n)(x− y)f(x)dx = (−1)nf (n)(y) ∀f(x) : y ∈ I, n ∈ N ∪ {0} (43)

we recover the stiffness matrix of local elasticity for materials with λ = µ by formally
setting8

Λ(ξ) =
15λ

2π

∆(ξ)

ξ6
(44)

in equation (42). This demonstrates the convergence of the discretized non-local formula-
tion towards the discretized local formulation.

3.3 Integral representation of the solution

Using the notation in appendix 7.3 we apply the Laplacetransformation with respect to
time t to (20) and find the transformed solution ũ(k, s) = L{ū(k, t)}:

ũ(k, s) =
(

ρs2I + M (k)
)−1 ·

(

b̃(k, s) + s ū0(k) + v̄0(k)
)

(45)

(

ρs2I + M(k)
)−1

=
nknk

ρs2 +M‖(k)
+

P nk

ρs2 +M⊥(k)
(46)

Knowing the individual Laplacetransforms

L−1{
(

s2I + T (k)
)−1} =

sin(ω‖(k)t)

ω‖(k)
nknk +

sin(ω⊥(k)t)

ω⊥(k)
P nk

=: ḡ(k, t)(47)

L−1{b̃(k, s) + s ū0(k) + v̄0(k)} = b̄(k, t) + ∆̇(t) ū0(k) + ∆(t) v̄0(k) (48)

8Using the operator identity xnδ(n)(x) ≡ (−1)nn!∆(x)∀n ∈ N we could alternatively set Λ(ξ) =
15λ
2π

∆(ξ)′′

2ξ4 or Λ(ξ) = − 15λ
2π

∆(ξ)′

ξ5 .
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we can use the convolution theorem of Laplacetransforms to obtain the solution in
Fourier space:

ū(k, t) =

∫

T
ḡ(k, t− τ) · b̄(k, τ)dτ + ˙̄g(k, t) · ū0(k) + ḡ(k, t) · v̄0(k) (49)

Finally we use the convolution theorem of Fourier-transforms to obtain the following
integral representation of the solution of equation (10) in (x, t) space

u(x, t) =

∫

B
u0(x − x̂) · ġ(x̂, t)dVx̂ (50)

+

∫

B
v0(x − x̂) · g(x̂, t)dVx̂

+

∫

B

∫

T

b(x − x̂, t− t̂)

ρ
· g(x̂, t̂)dt̂dVx̂

with the Green’s tensor9

g(x, t) = F−1{ḡ(k, t)} = nxnx gnx
(x, t) + P nx

gPnx
(x, t) with (51)

gnx
(x, t) =

1

2π2

∫ ∞

0

k2[ a1(xk)

(

sin(ω⊥(k)t)

ω⊥(k)
− sin(ω‖(k)t)

ω‖(k)

)

+
sin(kx)

kx

sin(ω⊥(k)t)

ω⊥(k)
] dk

gPnx
(x, t) =

1

2π2

∫ ∞

0

k2[ a2(xk)

(

sin(ω⊥(k)t)

ω⊥(k)
− sin(ω‖(k)t)

ω‖(k)

)

+
sin(kx)

kx

sin(ω⊥(k)t)

ω⊥(k)
] dk

where the notation a1,2(x) = A1,2(x) − 1
3

has been used. Substituting (50, 51) into (10)
confirms that the equation of motion is identically satisfied. Since g(x, 0) = 0 and ġ(x, 0) =
∆(x)I the initial conditions are satisfied as well.

4 Examples

In this chapter we consider the following examples:

• Transient dynamics of a bar (1D)

• Initial value problem for initial data with Fourier-series representation (3D)

• Static solution for a single point load (3D)

9Applying an external force which is localized in both time and space, b(x, t) = ρ ∆(t)∆(x)n, to a
body initially at rest leads to the solution u(x, t) = n · g(x, t).
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4.1 Transient dynamics of a bar (1D)

In the following we consider a bar at rest for t ≤ 0, subject to a pair of self-equilibrated
point loads for t > 0:

u0(x) = 0 (52)

v0(x) = 0

b(x, t) =
F

A
(∆(x− L) − ∆(x+ L))

This problem has been the topic of previous research. In [41] the static analytical solution
for less smooth micromodulus functions c ∈ CD(R), D <∞ is discussed. In [10] the static

numerical solution is discussed in the context of adaptive grid refinement. In this paper
we discuss the fully dynamic response, both numerically and analytically. We begin by
introduce the normalization

x̂ =
x

L
, t̂ =

t

L/c0
, û(x̂, t̂) =

u(x̂L, t̂ L
c0

)

2FL/EA
, ĉ(x̂) =

c(x̂L)

E/L3
, b̂(x̂, t̂) =

b(x̂L, t̂ L
c0

)

2A/F
, ω̂(k̂) =

ω(k̂/L)

c0/L

where the displacement field has been normalized with the static elongation of a bar of
length 2L subjected to a static force F in local elasticity. Then the solution for both local
and non-local formulation is given by (5, 52)

û(x̂, t̂) =
1

2π

∫ +∞

−∞

1 − cos(ω̂(k̂)t̂)

ω̂2(k̂)
sin(k̂x̂) sin(k̂)dk̂ (53)

From (53) we see that the displacements are antisymmetric, û(−x̂, t̂) = −û(x̂, t̂).

4.1.1 Classical local solution

Local elasticity corresponds to a linear dispersion relation, ω̂(k̂) = k̂. In this case we can
evaluate equation (53) explicitly. The solution can be written as the superposition of the
transient solution L

Tû(x̂, t̂) and the static solution L
Sû(x̂):

Lû(x̂, t̂) = L
Tû(x̂, t̂) + L

Sû(x̂) with (54)
L
Tû(x̂, t̂) = 1/8 [ (sgn(1 − x̂+ t̂) + (sgn(1 − x̂− t̂) (55)

−(sgn(1 + x̂+ t̂) − (sgn(1 + x̂− t̂) ]

L
Sû(x̂) =

1

4
(|1 + x̂| − |1 − x̂|) (56)

where sgn(x) = x/|x| is the sign function. Because the initial conditions are not in equi-
librium with the applied static load the resulting displacement field is time dependent.
However, if only consider e.g. the spatial interval x̂ ∈ [−1, 1] then the displacements be-
come independent of time for t̂ ≥ 2. In general we have L

Tû(x̂, t̂ → ∞) = 0 ∀x̂, while L
Sû(x̂)

is the static solution for equations (1, 2, 52). This is illustrated in the following graphic
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Fig. 3: Local solution Lû(x̂, t̂)

4.1.2 Peridynamic non-local solution

Consider the following peridynamic material, characterized by the micromodulus function:

c(x; δ) =
E

δ3

2

π

sin (x/δ) − (x/δ) cos (x/δ)

(x/δ)3 ⇔ ω(k; δ) =
c0
δ

{

kδ kδ ≤ 1

1 kδ > 1
(57)

In the following we normalize the material length-scale associated with the non-local ma-
terial model, the horizon δ, with the geometrical length-scale of the bar, L: δ̂ = δ/L.
The static solution defined in (1, 3, 52) can be found analytically using Fourier trans-
formations, NLS ū(k; δ) = F1D{NLS u(x; δ)} ≡

∫ +∞
−∞ e−ikxu(x; δ)dx:

NL
S ū(k; δ) =

b̄(k)

c̄(0; δ) − c̄(k; δ)
(58)

b̄(k) = −2ı
F

A
sin(kL) (59)

c̄(k; δ) =
E

δ2

1 − (kδ)2

2
[ sgn(1 − kδ) + sgn(1 + kδ) ] (60)
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Returning to normalized variables we can solve the integrals required for the inverse trans-
formation analytically by identifying the inverse of the 1D Dirac distribution δ̄(k) = 1:

NL
S û(x̂; δ̂) =

1

4

(

2

π
Si(

1 + x̂

δ̂
)(1 + x̂) − 2

π
Si(

1 − x̂

δ̂
)(1 − x̂)

)

− δ̂

π
sin(

1

δ̂
) sin(

x̂

δ̂
) (61)

+δ̂2[
∆(x̂− 1) − ∆(x̂+ 1)

2
+

cos(1

δ̂
) sin( x̂

δ̂
) − x̂ cos( x̂

δ̂
) sin(1

δ̂
)

π(1 − x̂2)
]

with the integral sine function Si(z) =
∫ z

0
sin(t)
t
dt.

In the following we verify this solution numerically. We know that the solution is antisym-
metric and we restrict out attention to x̂ > 0. Assuming a constant far field û(x̂) = û∞ for
x̂ > x̂∞ ∈ N we approximate the remaining integral over [0, x̂∞] in (3) by the composite
midpoint rule to obtain the following equilibrium equations for the discrete displacements
NL
S ûi(δ̂) ≈ NL

S û(x̂i; δ̂), x̂i = i/N, i = 1, . . . , x̂∞N − 1:

NL
S û

f

(δ̂) = ĉ
f

−1 b̂
f

(62)

NL
S û

f

= (NLS ûi)
T , ĉ

f

= (ĉi,j), b̂
f

= (b̂i)
T

ĉi,j = f(−∞) δi,j −
ĉ(x̂j − x̂i) − ĉ(x̂j + x̂i)

N

b̂i = b̂(x̂i) + û∞

(

ĉ(x̂∞ − x̂i) − ĉ(x̂∞ + x̂i)

2N
+ f(x̂∞ − x̂i) − f(x̂∞ + x̂i)

)

with

f(ẑ) =

∫ ∞

ẑ

ĉ(ξ̂)dξ̂

For the material (57) we have

f(ẑ) = δ̂−2[
sin(ψ) − ψ cos(ψ)

πψ2
+

1

2
− Si(ψ)

π
]ψ= ẑ

δ̂

(63)

while the point load is represented by b̂(x̂i) =
Nδi,N

2
.

In the following graphic we plot the analytical solution (61, blue line) as well as the linear
interpolation of the numerical solution (62, dots connected by black line) together with the
local solution (56, red dashed line) for δ̂ = 0.5, N = 10, x̂∞ = 2, u∞ = 0.510.

10In [10] it is shown that this is indeed the exact local as well as non-local far-field solution.
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Fig. 4: Comparison of analytical and numerical solution for the static non-local case

We can see that already for this relatively coarse discretization with only 19 degrees of
freedom the numerical values agree very well with the analytical values inside the loaded
region x̂ < 1. At the location of the point load x̂ = 1 the discrete solution approximates the
Dirac distribution also predicted by the analytical solution. However, despite this singular
loading the adjacent numerical displacements remain smooth. Finally at x̂ = x̂∞ = 2 we see
a small jump caused by guessing the far-field displacements. Note that for large x̂∞ → ∞
the choice of û∞ becomes irrelevant for the solution (62) inside the region x̂ < 1.
Returning to the dynamic problem we find

NLû(x̂, t̂; δ̂) = NL
T û(x̂, t̂; δ̂) + NL

S û(x̂; δ̂) with (64)

NL
T û(x̂, t̂; δ̂) =

1

8
[
2

π
Si(

1 − x̂+ t̂

δ̂
)(1 − x̂+ t̂) +

2

π
Si(

1 − x̂− t̂

δ̂
)(1 − x̂− t̂) (65)

−2

π
Si(

1 + x̂+ t̂

δ̂
)(1 + x̂+ t̂) − 2

π
Si(

1 + x̂− t̂

δ̂
)(1 + x̂− t̂) ]

− cos(t̂/δ̂) [ δ̂2 ∆(1 − x̂) − ∆(1 + x̂)

2

+ δ̂2
sin( x̂

δ̂
) cos(1

δ̂
) − x̂ cos( x̂

δ̂
) sin(1

δ̂
)

π (1 − x̂2)
− δ̂

sin(1

δ̂
) sin( x̂

δ̂
)

π
]

Note that unlike in the local theory the "transient" response does not vanish for large t̂.
Instead we have undamped oscillations with the normalized angular frequency 1/δ̂ and
amplitude NL

A û(x̂; δ̂) around the static solution NL
S û(x̂; δ̂).

NL
LT û(x̂, t̂; δ̂) = NL

T û(x̂, t̂ >> 0; δ̂) = NL
S û(x̂; δ̂) + NL

A û(x̂; δ̂) cos(t̂/δ̂) (66)

NL
A û(x̂; δ̂) = δ̂2 [

∆(x̂− 1) − ∆(x̂+ 1)

2
+

cos(1

δ̂
) sin( x̂

δ̂
) − x̂ cos( x̂

δ̂
) sin(1

δ̂
)

π(1 − x̂2)
]
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4.1.3 Comparison of classical and Peridynamic solution

As pointed out in [41] the presence of a Dirac distribution in the external loads leads
to a Dirac distribution in the displacement field under the point load in the non-local
formulation. This is not the case in the local formulation. In this sense the local formulation
seems more smooth. However, for all other points the opposite is true: while the strain
field has a jump discontinuity in local elasticity it remains continuous in peridynamics, as
illustrated in the following graphics

-2 -1 1 2

-0.4

-0.2

0.2

0.4

x̂

û

δ̂ = 1/2

δ̂ = 1/4

δ̂ = 1/8

δ̂ = 0

Fig. 5: Static solution in local elasticity and peridynamics

In the local formulation a static point load eventually (i.e. for t̂→ ∞) leads to a static
deformation field, see (56). This is not true in peridynamics where in the long time (LT )
limit any point continuous to oscillate around the static solution NL

S û(x̂; δ̂) with frequency

1/δ̂ and amplitude NL
A û(x̂; δ̂) as shown in (66). In the limit as δ̂ → 0 the frequency of

these oscillations becomes infinite while the amplitude goes to zero: NL
A û(x̂; δ̂) = O(δ̂2).

At the same time the static non-local solution converges to the static local solution (56),
NL
S û(x̂; δ̂ → 0) = Lû(x̂). In the following graphics the local displacement under the point

load Lû(x̂ = 1, t̂) (red) is plotted together with the static non-local solution, NLS û(x̂ = 1; δ̂ =

1/4) (black, solid), the dynamic non-local solution NLû(x̂ = 1, t̂; δ̂ = 1/4) (blue) as well as
the amplitude of the predicted oscillations (black, dashed):
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Fig. 6: Displacement û(x̂ = 1, t̂) under the point load in local and non-local elasticity

According to (4, 52) the displacement under the point load can also be interpreted as
the total energy of the system: Etot(t) = 2F

A
u(x = L, t). In local elasticity the total energy

becomes constant for t̂ ≥ 2 and the system is conservative. In peridynamics the point
under the point load never comes to rest so the point forces continue to change the total
energy.

4.2 Initial value problem for initial data with Fourier-series rep-
resentation (3D)

As an example consider the following initial displacement11

u(x, 0) = U 0 cos(k0 · x) ↔ ū0(k) = (2π)3U 0
∆(k + k0) + ∆(k − k0)

2
(67)

Then the solution follows from equation (49):

ū(k, t) = ˙̄g(k, t) ·
(

(2π)3U 0
∆(k + k0) + ∆(k − k0)

2

)

(68)

u(x, t) = ˙̄g(k0, t) cos(k0 · x) · U 0 (69)

=
(

cos(ω‖(k0)t) nk0
nk0

+ cos(ω⊥(k0)t) P nk0

)

· U 0 cos(k0 · x)

While the spatial distribution is identical in local and non-local elasticity the temporal
dependence is generally different due to the nonlinear dispersion relation.

11Adding additional initial velocity is straight forward. Also this methodology can be easily extended
to initial data with countably many wavenumbers, i.e. with Fourier-series representation.
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4.3 Static solution for a single point load (3D

The non-local static solution of (20)

ū(k) = M−1(k) · b̄(k) (70)

subjected to a point load at the origin, b(x) = P δ(x), is given by

u(x) = F−1{M−1(k)} · P with (71)

F−1{M−1(k)} = fnx
(x)nxnx + fPnx

(x)P nx (72)

fnx
(x) =

1

2π2

∫ ∞

0

[ a1(xk)

(

k2

M⊥(k)
− k2

M‖(k)

)

+
sin(kx)

kx

k2

M⊥(k)
] dk

fPnx
(x) =

1

2π2

∫ ∞

0

[ a2(xk)

(

k2

M⊥(k)
− k2

M‖(k)

)

+
sin(kx)

kx

k2

M⊥(k)
] dk

where x = ||x||. Substituting the component of the local acoustic tensor equation (22, 23)
we obtain the well-known result, see e.g. [13]

Lu(x) =
1

8πµx

(

2 nxnx +
λ+ 3µ

λ+ 2µ
P nx

)

· P (73)

In the non-local case the integrals given in eqs. (72) do not converge: the last term in the
integrands is unbounded for large k since, unlike in the local case, the acoustic tensor is
constant in this limit: NLM‖(k),

NLM⊥(k) → NLM∞ . The reason for this divergence is the
presence of a Dirac-distribution in the solution. When rewriting eqs. (72) to exclude the
Dirac-distribution, the remaining integrals converge:

NLfnx
(x) =

1

2π2

∫ ∞

0

[ a1(xk)

(

k2

M⊥(k)
− k2

M‖(k)

)

+
sin(kx)

kx

(

k2

M⊥(k)
− k2

NLM∞

)

] dk

+
∆(x)
NLM∞ (74)

NLfPnx
(x) =

1

2π2

∫ ∞

0

[ a2(xk)

(

k2

M⊥(k)
− k2

M‖(k)

)

+
sin(kx)

kx

(

k2

M⊥(k)
− k2

NLM∞

)

] dk

+
∆(x)
NLM∞ (75)

As an example we consider the exponential micromodulus function discussed in section
3.2.5. The results of the numerical integration is presented in the plots below for different
degrees of non-locality δ > 0 , together with the local solution δ = 0 with λ = µ. On the

left, the normalized displacement component
NLfnx (x)

µ
in the direction of x is shown while

on the right the normalized displacement component
NLfP nx

(x)

µ
orthogonal to x is shown.
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Fig. 7: Local and non-local deformation under a static point load

This numerical study indicates that in the limit of vanishing horizon δ → 0 the non-local
solution converges towards the local solution almost everywhere. However, for any finite
horizon δ > 0 the displacements under the point load remain bounded12 when ignoring the
Dirac-distribution13.

In contrast the displacements in local elasticity are unbounded due to the presence of
the 1/x singularity in the solution.

5 Conclusions

This paper concentrates on the comparison between the classical, local and the peridy-
namic, non-local formulation of linear elasticity. First we develop an integral representation
for the solution of the 3D bond-based peridynamic equation of motion. Then we apply this
theoretical result to a series of static and dynamic problems in 1D and 3D. We found that
when subjecting a peridynamic material to a point load represented mathematically by a
Dirac distribution, the response will also include a Dirac distribution. The presence of
Dirac distributions in the deformation field / Green’s function is not unphysical since
any physical loading function is always applied over a finite spatial domain. Applying
the same point loading to the classical local material does not lead to a Dirac response
which suggest that in some sense the local response is smoother. However, that is not
the complete picture. When disregarding Dirac contributions, the remaining non-local
deformations are actually in some sense more smooth: in 1D the strain field across a point
load has a jump discontinuity within the local formulation but remains continuous in peri-
dynamics. In 3D the local displacements have a 1/x-type singularity when approaching the
point load while the non-local displacements remain finite. This is perhaps not surprising

12In [24] the analogous result is obtained for the static Green’s function within the context of the
so-called quasicontinuum model of a perfect lattice of identical particles.

13If we had applied the external force field to a finite region in space the Dirac-distribution would not
be present in the solution.
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as the motivation in some of the earlier work on weakly non-local methods was to remove
the presence of the unphysical 1/x-type singularities in the stress field surrounding a crack
tip.
There are several interesting and challenging directions for future research in non-local
elasticity:

• More complex / realistic external forces such as time-dependent point loads (either
at a fixed spatial position, or moving in space), or spatially distributed loading.

• Non-local deformation and stress field surrounding a crack tip.

• More complex non-local material models, e.g. for anisotropic CFRP composites.

• Non-local boundary conditions and their relationship to the local boundary conditions
(Dirichlet, Neumann, Robin).

Studying these problems would provide important theoretical insight and increase the
fidelity of peridynamic simulations.
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7 Appendix

7.1 Nomenclature

v Vector
v Vector norm v = ||v|| =

√
v · v

nv Normal vector nv = v
v

(v 6= 0)
ab Dyadic product
a · b Dot product
a × b Cross product
T Tensor
I Identity tensor T · I = I · T = T

P n Projector P n = (I − nn)
Tr(·) Trace Tr(T ) = T : I
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δij Kronecker Delta δij = δij =

{

1 i = j

0 i 6= j

ei = ei Cartesian basis ei · ej = ei · ej = δij
x Position vector x =

∑3
i=1 xiei

∇(·) Gradient operator ∇(·) =
∑3

i=1 ei
∂(·)
∂xi

t Time

ḟ (x, t) Time derivative ḟ (x, t) = ∂f(x,t)
∂t

ı Imaginary unit ı2 = −1
∆(x) / ∆(x) 1D / 3D Dirac distribution

7.2 Fouriertransforms

7.2.1 Definition

In the cartesian basis {ei} the Fouriertransform f̄(k) of the vector-valued function
f (x) =

∑3
i=1 fi(xj)ei of the three independent variables xj = ej · x, j = 1, 2, 3 is de-

fined as

f̄ (k) ≡ F{f(x)} :=

∫

R3

e−ik·xf (x)dVx (76)

f(x) ≡ F−1{f̄ (k)} =
1

(2π)3

∫

R3

eik·xf̄(k)dVk (77)

or in component form

f̄i(k1, k2, k3) ≡ F{fi(x1, x2, x3)} :=

∫

R3

e−i(k1x1+k2x2+k3x3)fi(x1, x2, x3)dx1dx2dx3

fi(x1, x2, x3) ≡ F−1{f̄i(k1, k2, k3)} :=
1

(2π)3

∫

R3

ei(k1x1+k2x2+k3x3)f̄i(k1, k2, k3)dk1dk2dk3

7.2.2 Fouriertransforms of derivatives

The Fouriertransform of the gradient of a tensor T is given by

F{∇⊗ T } = −ik ⊗ F{T} (78)

where ⊗ ∈ {·, ,×} is the dot product, dyadic product or the cross product. As an example
the Fouriertransform of the derivative of a scalar function f(x, y, z) with respect to x is
given by F{∂xf(x, y, z)} ≡ F{ex · ∇f} = −iex · kf̄(kx, ky, kz) = −ikxf̄(kx, ky, kz).

7.2.3 Convolution theorem

The convolution of the two function f(x) and g(x) is defined as follows

h(x) :=

∫

R3

f (x̂) ⊗ g(x − x̂)dVx̂ =

∫

R3

f (x − x̂) ⊗ g(x̂)dVx̂ (79)
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where ⊗ ∈ {·, ,×} is the dot product, dyadic product or the cross product between the
two vector-valued functions f and g. Then the Fouriertransform of h(x) is given by
h̄(k) = f̄(k) ⊗ ḡ(k).

7.3 Laplacetransforms

7.3.1 Definition

In cartesian basis {ei} the Laplacetransform f̃(s) of the vector-valued function f (t) is
defined as

f̃ (s) ≡ L{f(t)} :=

∫ ∞

0

exp(−st)f (t)dt (80)

f(t) ≡ L−1{f̃(s)} =
1

ı

∫ γ+ı∞

γ−ı∞
exp(st)f̃ (s)ds (81)

7.3.2 Laplacetransforms of derivatives

L{f (n)(t)} = snf̃(s) − f(+0)sn−1 − f ′(+0)sn−2 − . . .− f (n−2)(+0)s− f (n−1)(+0) (82)

7.3.3 Convolution theorem

The convolution of the two function f(t) and g(t) is defined as follows

h(t) :=

∫ t

0

f (τ) ⊗ g(t− τ)dτ (83)

where ⊗ ∈ {·, ,×} is the dot product, dyadic product or the cross product between the
two vector-valued functions f and g. Then the Laplacetransform of h(x) is given by
h̃(s) = f̃(s) ⊗ g̃(s).
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